Engaging assignments and in-class activities

Katie King
Center for the Advancement of Teaching and Learning

ELON UNIVERSITY
Plan for this session

<table>
<thead>
<tr>
<th>Time</th>
<th>Participant structure</th>
<th>Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>Whole Group</td>
<td>Overview</td>
</tr>
<tr>
<td>10:20</td>
<td>Work Teams</td>
<td>Jigsaw assignments</td>
</tr>
<tr>
<td>10:40</td>
<td>Home Teams</td>
<td>Share ideas</td>
</tr>
<tr>
<td>11:00</td>
<td>Whole Group</td>
<td>Wrap up</td>
</tr>
</tbody>
</table>
Engaged learning is a pleonasm

Deep conceptual learning does not happen without engagement - a state of motivated, focused mental (and sometimes physical) activity.

Engaged learning occurs as a solo activity or in dialogue with others (face-to-face or mediated).

Engaged learning is creative & constructive.
Engaged learning at Elon

🌟 Organize content around enduring concepts & big questions *that have immediate significance* outside the context of the course

🌟 Focus on content *and* process; model & guide processes, *especially those specific to your discipline*

🌟 Require students to be *responsible for their learning*: preparing, bringing in content, & making links to prior knowledge

🌟 Prompt *integrative critical reflection* e.g., on relationships between: theory ↔ application, course ↔ community, concrete experiences ↔ abstract concepts, this learning activity ↔ other experiences/courses
Sequence in- & out-of-class activities

How will students use what they learn out of class when they are in class --- and vice versa?

Fink’s Castletop (2005) -- Weave activities across contexts so learning is integrated & cumulative
Activities are constructive, interlinked, & sequential, requiring progressively more complex thinking:

- **Analysis** – what are the important dimensions along which this concept varies? How are the parts related to the whole?

- **Elaboration** – where does this fit into a rich conceptual database? What else can it be connected to?

- **Synthesis** – across a variety of sources, integrating new material with prior knowledge, including student voice

- **Application** – using newly integrated concepts to interpret familiar situations and then to make inferences about new situations and solve novel problems
Students complete *double entry journals* as they encounter new information (making text-self, text-text, and text-world connections) then share with some audience, e.g., pair-share in class

<table>
<thead>
<tr>
<th>What?</th>
<th>So what?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q: Exact quote p #</td>
<td>Is this a simile?</td>
</tr>
<tr>
<td>Summary or main point</td>
<td>I would argue…</td>
</tr>
<tr>
<td>Interesting or confusing idea</td>
<td>So, does that mean that…?</td>
</tr>
</tbody>
</table>
Use student responses to warm-up assignments to structure in-class activity

Step 4. JiTT teachers should design a set of questions that probe for the understanding or misunderstanding of the concepts. If the lesson is part of a sequence, the teacher should design questions that require application of knowledge acquired in previous lessons. Ideally, the question set is broad enough to enable construction of the lesson content from student responses. Teachers should anticipate potential student responses. When the submissions are in hand, the teacher should look for well-articulated versions of the arguments they anticipated as well as for surprise responses.

(Novak, 2011, p. 66)
More examples of integrative activities

- Students locate and post relevant sources related to reading, these are used to initiate discussion in class
- Students prepare and lead part/all of class activity or discussion
- Students take turns summarizing class discussion & post after class
- Students write in pairs to a prompt or vignette in-class as a bridge between reading, class coverage, and individual writing

Others?
1. Students in Josh Kapfer’s Wildlife Ecology (WE) course used GPS equipment to collect wildlife movement and habitat data

2. The raw data was sent to students in Ryan Kirk’s Geographic Informational Systems (GIS) course

3. GIS students analyzed components of this information (e.g., land cover and spatial pattern estimation) with GIS software

4. WE students interpreted the data and wrote up reports

Thinking outside the box turtle
1. Participants start out in home teams to tackle a problem;

2. move to work teams to specialize in a specific aspect of the problem; then

3. come back to home teams to share what they have learned.
Wrap up

任何形式的“啊哈！”时刻吗？

你希望了解更多什么？

你将如何应用这些想法在你自己的教学中？

Simkins, S., & Maier, M. (2010) *Just in time teaching: Across the disciplines, across the academy*