Elon College Vision for Technology

Elon College—a national leader in technology-enhanced learning.

Prepared by a subcommittee of the Long Range Planning Committee:
Chris Fulkerson, chair, Associate Library Director
Gerald Whittington, vice-chair, Vice President for Business & Finance
Jim Brown, Assistant Professor of History
Ron Driscoll, Director of Information Systems & Technology
Gerry Francis, Provost
Brad Hamm, Assistant Professor of Communications
Judith Howard, Associate Professor of Education
Ken Lee, Instructor of Music
Jim Murphy, Director of Academic Computing
Scott Nelson, Assistant Dean of Students
Roz Reichard, Dean of Sciences and Mathematics
Courtney Russell, Class of 2002
Barth Strempek, Assistant Professor of Business Administration
Executive Summary

After extensive internal assessments and campus-wide discussion, Elon College has formulated a three-year plan for the growth and development of technology on our campus.

The plan is based on our vision of

• Technology that facilitates a knowledge-building community of learners and scholars
• Technology that prepares students for an information-based world
• Technology that is pervasive across campus and that reaches across time and distance to be accessed anytime anywhere

The plan has three areas of concentration with goals to accomplish in each area.

Enhance the teaching, learning and research of faculty, students and staff

Goal (1): Develop and support curriculum and program initiatives for teaching and learning through the use of appropriate technologies

Goal (2): Develop the capability for distance learning through the use of remote technologies

Prepare students for a life and career in a rapidly evolving age of technology

Goal (3): Develop college-wide and discipline-specific technology objectives, define ways to enable students to meet these objectives.

Goal (4): Infuse technology throughout the curriculum, internships and work experiences so that Elon College students become known nationwide for their expertise in the use of technology.

Improve efficiency and effectiveness of communications and operations

Goal (5): Provide the infrastructure and support that enable improved communications and operations technologies to be introduced in a timely and efficient manner

The focus of our plan is on enhancing teaching and learning through the use of technology. It features the establishment of a Technology Center, ongoing professional development, and efficient access to information and support.

The expected budget impact is approximately $1.5 million annually and one-time expenditures of $3 million (mostly for the construction of the Technology Center and specialized teaching spaces.)
Elon College Vision for Technology

Elon College—a national leader in technology-enhanced learning.

INTRODUCTION

Rapid changes in information acquisition and dissemination, brought on by equally rapid technological advances, are having a significant impact on education. In light of these advances, it is crucial that Elon College faculty and students be prepared to use new technologies to enhance teaching and learning.

For students to develop the skills necessary to use technology wisely and productively, they must encounter information technology throughout the curriculum. Faculty and students must have easy access to technology anywhere on campus. Classrooms must be equipped with electronic presentation equipment, and the library must have up-to-date resources.

In addition to campus-based services, new technologies enable innovative ways to teach and learn at a distance. Instruction centered at Elon College now can be delivered to remote sites across the state, the nation and the world. Through electronic media such as the Internet and interactive video, we have the ability to bring “virtual” classroom experiences to distant schools, homes, workplaces and communities. Small groups of students can carry on threaded discussions via the Internet with students and experts at a distance. Visiting lecturers can “visit” a classroom electronically from anywhere in the world. Elon College can establish and maintain contact with students after graduation, continuing the mentoring relationships that faculty have established with their students. Graduates can continue life-long-learning through Elon College, sharing their on-the-job knowledge with students, while brushing up on new discoveries in their own fields.

This plan describes how Elon College can make its vision for technology a reality, is the result of the cooperative efforts of faculty, administrators and staff, with constant consideration of the recommendations and needs of students.

Note: There are three main sections of this plan which are of interest to faculty, students and staff members, respectively. Because many objectives equally apply to other sections, and some readers may focus only on the section pertaining to them, the Committee believed that the potential to miss important elements of the plan existed. This plan, therefore, contains purposeful redundancy to make sure that all of the pertinent elements of the plan are widely known.

A budget and comparison charts are included in the appendices.
METHODOLOGY

Kaludis Consulting Group was engaged by Elon College to review the information technology environment at the College and to offer recommendations for refocused priorities, future investments, new services, and organizational changes. This assessment included an understanding of the College and its aspiration so that recommendations could be framed within the context of what would make sense for Elon. This assessment was presented to the Board of Trustees in March 1999.

Additionally, Dr. Ed Meachen of the University of Wisconsin provided a report to the Board that demonstrated uses of technology available at Wisconsin as well as other institutions of higher education across the country and the world.

The Board of Trustees asked that a three-year technology plan be developed and reviewed with them. The plan should include both the academic and administrative plans as well as the costs of implementation. The Long Range Planning Committee of the College created a subcommittee on Technology and solicited information from every portion of the campus community. The Long Range Planning sub-committee was comprised of faculty, students, staff and administrators.

Academic five-year plans and administrative unit plans were consulted. Over 50 heads of academic and administrative units were interviewed as well as individual faculty and staff. Student perspectives were solicited from the Student Government Association, workers in the computer labs and incoming freshmen. In all, more than 100 people and 200 plans and documents were consulted.
RESULTS

Faculty staff and students made similar points regarding technology at Elon College. While the details of the responses might differ by department, the core sentiments seemed to be consistent.

Generally, the opinions appear to fall in these categories:

The importance of the Academic Program
The academic program should drive the development and implementation of technology on campus. Considered as a pyramid, learning is at the top and it occurs in both curricular and co-curricular ways. The organizational structure, support systems and the operations of the College should support the learning that takes place in curricular and co-curricular activities. Technology provides the underlying support for how we operate. In other words, learning is preeminent, not the operations or the technology.

Assistance/Education/Ease of use
- Learning technology takes a lot of time and most faculty and staff feel that they cannot learn the skills and capabilities on their own. It would be far too time consuming to teach the needed skills on a one-on-one basis.
- Technology, especially software, changes every 18 months (at the latest) and most cannot keep up with the pace.
- Many are concerned that they are not aware of what technologies are available. It is this limited awareness that has kept many faculty from using technology in the curriculum.
- Faculty are concerned about reliability of the technology while under the pressure of an actual class environment. If the faculty member is not sure the software or hardware will work, there is a tendency to avoid the use of the technology. This is especially true if the faculty member is not well versed in the technology.
- The repair and maintenance of hardware and diagnosis of software problems is of major importance to faculty and staff. The current method of prioritizing scarce support personnel causes, with some frequency, frustration and pent-up demand for assistance that is unmet.

“Enhance me”
- “I need better equipment.” New software enhancements drive the need for updated and more powerful hardware. The College currently replaces the average machine every four to five years. This has proven to be too infrequent for some operations and departments. Either the new software enhancements are delayed or some departments receive current hardware at the expense of others.
- “I need better software.” The same as the situation with hardware, with similar results.
- “I need more/better facilities.” Most academic departments expressed a wish for more computerized classrooms and/or specialized technology facilities (i.e., language labs, video editing labs, etc.). This would allow for each department to have restricted or limited access to laboratory or classroom facilities set up especially for their needs.
• “I want a robust network.” In the academic disciplines that are intensely technology driven (as in Communications and most of the sciences), there is a need for the network to continue to be fast and reliable.

Looming Questions
• The FCC and Congress have mandated High Definition TV to be the norm by 2006. This will cause the College to replace everything we have either in one fell swoop or phased-in by that time.
• The capability to produce streaming video on the network will become a reality in the spring of 2000. The number of users of this capability may cause degradation of the network unless the newest (and most expensive technologies) are introduced.
• Technologies are becoming increasingly digital. Telecommunications, networking and computing are merging technologies with unexpected benefits as well as problems.

Organizational Issues
The community had simple, yet powerful opinions on the organizational structure for technology on the campus. In all cases the organization should support the mission of the College’s academic program. Beyond that, the issues should address the following items:
• Make it clear who does what and whom to call;
• Make the organization responsive;
• Make it reliable.

Caution
• This plan will develop near term goals and the College will continue to chase after an illusive and costly future.
CONCLUSIONS

The sub-committee reviewed the materials and concluded that a mission statement was needed to outline the range of technological implications and uses on campus. The sub-committee adopted the following mission statement:

Instructional and campus technology should support the mission of the college by:

1) Enhancing the teaching, learning and research of faculty, students and staff;
2) Preparing students for an information-based world;
3) Improving the efficiency and effectiveness of communications and operations.

1. Teaching/Learning/Research

All members of the college community are committed to excellence in teaching, learning and research. In an effort to support students in their intellectual and personal development, information technologies should enhance the learning and research environment through initiatives that expand learning and scholarly dialogue beyond the classroom.

2. Student Preparation

In an information-based world, organizations seek individuals who can gather information and knowledge, learn, solve problems, and deal with uncertainty. Technology and its applications are an important part of the world. Students should be prepared for the information age by supporting their learning of basic technology skills and their ability to adapt and change as new technologies are developed.

3. Communications and Operations

With the current merging of technologies, significant improvements are possible to internal and external communications as well as administrative processes. Technology should be used to improve current methods through an institution-wide set of strategies and a realignment or reorganization of existing structures.
IMPLEMENTATION

Each element of the mission statement contains goals and objectives. In order to meet the mission statement and the principles outlined above, the College will have to provide the equipment, software, personnel, programs and facilities necessary to meet these Three-year Technology Plan goals. Taken in order, the goals and objectives are:

Enhance the teaching, learning and research of faculty, students and staff

Goal (1): Develop and support curriculum and program initiatives for teaching and learning through the use of appropriate technologies

1) Develop and phase-in new and appropriate teaching and learning technologies for the curriculum. The sequence of these new technologies should be as follows. The purpose of this sequence is to affect the most students at the earliest stages of their academic career.

 a) Phase I
 Train and assist faculty who teach the freshman core courses to integrate technology into those courses.

 b) Phase II
 Choose instructional technology as the self-study area of emphasis for our upcoming SACS accreditation to identify discipline specific technology competencies and how each discipline can use technology to enhance learning.

 c) Phase III
 Implement findings from the SACS technology self-study.

2) Provide faculty development support for the effective use of appropriate technology in the curriculum.

 a) Technology Fellowships, Grants and Release-time, Summer Institute
 This professional development program would provide year-round opportunities for faculty members to learn to use technology and develop course specific materials. Faculty members would receive released time or stipends as appropriate.

 b) Technology Assistants
 This program would provide student assistants to help faculty members conceive, design and produce technology enhancements to the curriculum.

 c) Technology Workshops
 This program would provide both new and routine workshops for faculty members to attend in the use and operation of technology.

3) Provide appropriate support staff in Instructional Design.

 a) Hire instructional designers who are good communicators. In order to accomplish the significant teaching and support efforts envisioned by this plan, additional personnel are required. Instructional designers, who are experts in combining technology and educational theory, need to work with faculty, who are the content experts, to solve
instructional problems. While some faculty members may teach other faculty members, some elements of the technology, the majority of the design work needs to be done by professional designers who understand teaching, rather than faculty members who can learn to design.

b) Hire a Web designer. Because of the explosion of applications that can be made available on the World Wide Web, the College needs an additional web designer to develop the number of projects already identified and to keep the college current with what other institutions are doing with the Web.

4) Create a Technology Center, similar to the Spanish Center concept, where instruction is available to faculty, students and staff. The center would be a place where curriculum enhancements through technology could be developed by faculty with assistance from the center’s staff. The center would also test new technologies for the campus.

The Technology Center should be located where faculty, staff and students can have easy access to the center and its staff. It should contain a computer lab for training. The center should have a “test-bed” lab/classroom where curriculum and software are explored, developed, tested for appropriate classes. The distance learning technology and studios should also be part of the center.

Creating a Technology Center is essential for the successful implementation of this plan.

5) Establish a fund to purchase academic field specific software. Because there is no current equitable method of purchasing software unique to each academic department, there is a need to establish a fund for purchasing field specific software. The Academic Technology and Computing Committee should serve as the body that sets the policy of allocating the funds (using the Library Committee model). The department responsible for academic technology will process the acquisitions.

6) Establish a technology replacement and renewal schedule. Continually upgrade computers and specialized instructional equipment.
 a) Computer equipment (both PC’s and Macintosh) should be replaced on a three-year cycle.
 b) Instructional equipment should be replaced from this fund at appropriate times according to its specific life expectancy (e.g. video cameras-5 years, film projectors-12 years).

7) Enhance current and introduce new classrooms containing a minimum of a data projector, communications outlet (voice, data, CATV), VCR, projection screen, and overhead projector for general use by all classes. Curriculum requirements may necessitate special classroom set-ups that go beyond the set minimum. Learning spaces that require new or improved technology should remain open to other disciplines that use similar applications or hardware.

8) Continue to acquire electronic resources in the Library and make them accessible.
9) Create a laptop environment on the campus.
 a) As we further develop our curriculum and discover how technology is able to support it, students will increasingly need to bring a computer to college. Elon College should allow this need to drive students to bring a computer, rather than requiring it.
 b) Mobility and ease of access with a laptop will make them essential tools of the classroom as well as tools students use to share information in informal settings.
 c) In three years, most faculty should be using laptop computers.

10) Provide basic software to students on a CD. All entering students should be provided with a CD containing all of the basic software necessary for their first year on campus. This CD would include the campus-wide standard software such as word processing, spreadsheets, database, e-mail and course software.

11) Encourage the use of the web for course communication and distribution of materials. Provide information and help sessions for faculty on the development of web course software, on-line course syllabi, course e-mail groups and course web pages.

12) Assume that students would need basic technology skills to successfully complete their curriculum. Technology mastery objectives will be developed for each program or major.

13) Identify areas that are not currently using technology, but could benefit from it, provide professional development funds and introduce the appropriate systems.

14) Increase the ability of faculty and students to communicate.
 a) Complete the wiring of residence halls (Jordan Center and Loy Center).
 b) Investigate an increase of bandwidth within residence halls that accommodates large file transfers to and from student computers.

Goal (2): Develop the capability for distance learning through the use of remote technologies

1) Investigate exporting more of Elon’s Summer Session, Winter Term and appropriate regular session programs as remote or distance learning programs for others. Provide students with the ability to take a Winter Term or Summer Session course from home or during their travel experiences.

2) Develop a system for two-way video between the campus and remote sites.

3) Develop agreements with other universities and colleges to be able to receive and rebroadcast individual courses or whole programs as supplements to the curriculum.

4) Use remote or distance learning technology to enhance and not replace current teaching methods.
5) Use remote or distance learning technology to enhance administrative functions in support of the academic program. Examples might be: interviewing international students to determine language skills prior to admission; providing broadcast research conferences for Elon students in collaboration with other students at other institutions on common projects; providing video interviewing through Career Services.

6) Use the new video technologies in the McEwen renovations to provide an opportunity to infuse new technologies as well as new capabilities for distance or remote teaching and learning.
Prepare students for a life and career in a rapidly evolving age of technology

Goal (3): Develop college-wide and discipline-specific technology objectives for college graduates in the 21st century and define ways for enabling students to meet these objectives.

1) During new student orientation, provide each student with a seminar on how campus technologies work, including e-mail, web applications, examples of course web materials and campus software/hardware configurations. Use this orientation time to take an assessment of the level of ability of the entering students.

2) Provide all entering students with a CD containing all of the basic software necessary for their first year on campus. This CD would include the campus-wide standard software such as word processing, spreadsheets, database, e-mail and course software.

3) Improve initial set-up and on-going support for all students with computers. Support for students has been steadily improving; however, it remains below Elon standards. Increased staffing is needed for connecting student computers at the beginning of the year, on-going help desk support and hardware support. The creation of a computer store should be considered as an outlet for new product purchases.

4) Provide web access to students for academic and student information. Universal web access and the ease of working in a graphical environment make it possible to provide students with information helpful to them. Develop on-line access to transcripts, course schedules, course information, on-line registration and payment systems.

5) Make it easy to access information, especially from off campus, with one user name and password. Provide added security where needed.

6) Create an environment where most students will need to use laptops within 3 years.

7) Complete the wiring of residence halls, the Loy and the Jordan Centers.

8) Investigate increasing network speed to dorm rooms. Students want, in addition to labs, the ability to download files and operate sophisticated software programs from the residence hall room. This will require faster transmission speeds directly to the student computer.

9) Provide all students with an e-mail account. Graduated students should be able to retain their campus e-mail address and use it as a forwarding mechanism to their new e-mail addresses or keep it live until they obtain a new e-mail address.

10) Generate e-mail class list automatically.

11) Expect students to have proficiency in the college-wide basic software.

12) Enable students to research and critically evaluate information using electronic resources.
13) Develop a Technology Assistants program that provides student assistants to help faculty members conceive, design and produce technology enhancements to the curriculum.

Goal (4): Infuse technology throughout the curriculum, internships and work experiences so that Elon College students become known nationwide for their expertise in the use of technology.

1) Introduce a voluntary technology certification program. This program would provide a certification of mastery of technology systems, software and hardware. This certification would appear on the Elon Experiences transcript.

2) Develop technology mastery objectives in each program or major. During Phase II of this three-year plan, use the upcoming SACS self-study’s focus on instructional technology to identify discipline-specific technology competencies and how each discipline can use technology to enhance learning.

3) Through Career Services develop internships with local business to help students demonstrate competencies and develop new competencies in technology.

4) Create a developmental Intranet site called Student-Webnet, where students could develop skills, test new ideas and demonstrate mastery of technology concepts and tools. For example, a student might develop a study guide of most frequently asked questions or misunderstood concepts in algebra.

5) Develop an awards program for students who develop new technologies, protocols or approaches that benefit other students.

6) Provide validation of technology proficiency on the Elon Experiences transcript.

7) Explore developing a technology minor for majors in the liberal arts.
Improve efficiency and effectiveness of communications and operations

Goal (5): Provide the infrastructure and support that enable improved communications and operations technologies to be introduced in a timely and efficient manner

1) Provide training and support for faculty, students and staff members
 a) During new student orientation, provide each student with a seminar on how campus technologies work, including e-mail, web applications, examples of course web materials and campus software/hardware configurations. Use this orientation time to take an assessment of the level of ability of the entering students.
 b) As a part of the orientation program for faculty and staff members, provide information on the use of campus technologies such as software, classroom technologies, e-mail and the web.
 c) Institute a professional development program for faculty that is offered on a regularly scheduled basis. The program should cover basic college software, web course development as well as new software packages.
 d) Hire instructional designers to assist faculty members incorporate appropriate technology into their courses.
 e) Enhance the Help Desk by extending the hours of operation and increasing the training of its staff. The Help Desk will serve students beginning with the 2000-2001 academic year.
 f) Increase the number of hardware and software technicians to meet the needs of faculty, staff and student.
 g) Develop a Technology Assistants program that provides student assistants to help faculty members conceive, design and produce technology enhancements to the curriculum.

2) Standardize equipment and software through planned upgrades.
 a) Establish a technology replacement and renewal schedule. Continually upgrade computers and specialized instructional equipment.
 i) Computer equipment (both PC’s and Macintosh) should be replaced on a three-year cycle.
 ii) Instructional equipment should be replaced from this fund at appropriate times according to its specific life expectancy (e.g. video cameras-5 years, film projectors-12 years).
 b) Provide all entering students with a CD containing all of the basic software necessary for their first year on campus. This CD would include the campus-wide standard software such as word processing, spreadsheets, database, e-mail and course software.
 c) Maintain the same software versions throughout the campus.
3) Make technology accessible.
 a) Provide Web access to library materials, directory information, some student records, billing information, financial aid information, and class materials.

 b) Make accessing information simple. One method is by using graphical user interfaces (GUI). GUI is intuitive and pervasive in software applications.

 c) Provide all appropriate operations with a web interface.

 d) Enhance the Admissions Department’s electronic communication with prospective students.

 i) Create Datatel Web interface for the admission application.
 ii) Allow students to view the progress of their application.
 iii) Create a multimedia Viewbook with a virtual tour of the campus.
 iv) Develop a virtual open house and create live chat rooms with admission counselors.
 v) Allow prospective students to view a class in progress.

 e) Expand the new Elon One-Card System to include features such as banking, vending, long-distance telephone calling card, door access, digital photos, etc.

4) Continue to consolidate technology resources and operations in order to focus the attention of the staff on the enhancement of teaching and learning. There are two models from which to choose:

Option A provides for day to day operational reporting to the Vice President for Business and Finance. However, a strong relationship with the Provost as well as three advisory committees (ATAC, Web and User’s Group) is required. For this reason, the Director of Instructional and Campus Technologies has a seat on the Academic Affairs Council in this model.

The Technology Policy Committee, chaired by the Provost, would continue to direct the technology planning of the College.
Option B continues the current split between academic uses of technology and administrative and support uses. The Technology Policy Committee, chaired by the Provost, would continue to direct the technology planning of the College.

Instructional and Campus Technologies: Option B

5) Require technological proficiency of Elon College employees. Use the new test bed laboratory in the Technology Center, as well as other computer labs, to teach faculty and staff necessary software and protocols.

6) Use technology to improve productivity.
 a) Introduce software to improve the coordination of scheduling events and facilities among and between offices.
 b) Investigate and introduce, where appropriate, paperless filing and access systems for information and documents. Scanning and digitizing technology should be introduced as appropriate.
c) Test wireless technology applications in the Belk Library, classroom environments and between buildings.
d) Review the continuing efficacy of the Datatel system and explore the need to use an alternate administrative software system.
e) Review the current library catalog and circulation system to determine if an on-campus system is necessary or preferable.

7) Identify areas that are not currently using technology, but could benefit from it and introduce the appropriate systems.

8) Increase the ability of faculty and students to communicate.
a) Complete the wiring of residence halls (Jordan Center and Loy Center).
b) Investigate an increase of bandwidth within residence halls that accommodates large file transfers to and from student computers.
Appendices
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Instruction</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summer Faculty Seminar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(50 faculty in two sessions @ $500/e)</td>
<td>$25,000</td>
<td>$25,000</td>
<td>$25,000</td>
<td></td>
</tr>
<tr>
<td>Summer Course Development Grants</td>
<td>$20,000</td>
<td>$20,000</td>
<td>$20,000</td>
<td></td>
</tr>
<tr>
<td>Fall/Winter/Spring Course Release for</td>
<td>$20,000</td>
<td>$20,000</td>
<td>$20,000</td>
<td></td>
</tr>
<tr>
<td>course development (10 during academic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SACS Self-Study and Implementation</td>
<td>$20,000</td>
<td>$25,000</td>
<td>$25,000</td>
<td></td>
</tr>
<tr>
<td>Technology Certification Seminars & Awards</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
<td></td>
</tr>
<tr>
<td>Administrative Systems</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Management reporting enhancements training</td>
<td>$25,000</td>
<td>$25,000</td>
<td>$25,000</td>
<td></td>
</tr>
<tr>
<td>New Web applications development & training</td>
<td>$10,000</td>
<td>$10,000</td>
<td>$10,000</td>
<td></td>
</tr>
<tr>
<td>E-mail addresses for graduates</td>
<td>$1,000</td>
<td>$2,000</td>
<td>$3,000</td>
<td></td>
</tr>
<tr>
<td>Scheduling software</td>
<td>$20,000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardware replacement plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replace all PC's or Mac's every 3 years</td>
<td>$500,000</td>
<td>$500,000</td>
<td>$500,000</td>
<td></td>
</tr>
</tbody>
</table>
Site licenses & Field Specific Software
- Move all to latest desktop software: $30,000
- Student software CD @ $50/each: $55,000
- Academic field specific software fund: $20,000

Capital project needs:
- Create Technology Center: $2,500,000
- New Elon Card (1999-2000): $-
- Scanners & Digitizing Equipment: $40,000
- Psychology teaching/research labs: $40,000
- Gait Lab: $250,000
- Classroom projectors: $105,000
- Distance Learning Classroom: $250,000
- Writing lab with computers: $75,000
- Foreign language & media classroom: $75,000
- Computer lab/classrooms: $85,000
- Wiring classrooms for laptop plug-ins: $30,000
- Music Lab enhancement: $25,000
- Wire Jordan Center: $171,000
- Wire Loy Center: $125,000

Technology Renewals and Replacements Fund
- $200,000

Technology Venture Project Equipment Fund
- $25,000
 (Wireless technologies, cable technologies, etc.)
Datatel Software Review

<table>
<thead>
<tr>
<th>Item</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Library PALS system review</td>
<td>$ 5,000</td>
</tr>
</tbody>
</table>

Additional Staffing:

<table>
<thead>
<tr>
<th>Position</th>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Academic Instruction Designer (2)</td>
<td>$82,500</td>
<td>$82,500</td>
<td>$82,500</td>
</tr>
<tr>
<td>Web designer (1)</td>
<td>$41,250</td>
<td>$41,250</td>
<td>$41,250</td>
</tr>
<tr>
<td>Help Desk staff (1)</td>
<td>$31,000</td>
<td>$31,000</td>
<td>$31,000</td>
</tr>
<tr>
<td>Multimedia Specialist</td>
<td>$41,250</td>
<td>$41,250</td>
<td>$41,250</td>
</tr>
<tr>
<td>Networking Engineer</td>
<td>$75,000</td>
<td>$75,000</td>
<td>$75,000</td>
</tr>
<tr>
<td>PC Repair - student support</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$40,000</td>
</tr>
<tr>
<td>PC Repair - student support</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$40,000</td>
</tr>
<tr>
<td>Lab/Classroom manager (1999-2000)</td>
<td>$-</td>
<td>$-</td>
<td>$-</td>
</tr>
<tr>
<td>Media Equipment Circulation specialist</td>
<td>$-</td>
<td>$-</td>
<td>$35,000</td>
</tr>
<tr>
<td>Scientific Equipment Technician (to full time)</td>
<td>$20,000</td>
<td>$20,000</td>
<td>$20,000</td>
</tr>
<tr>
<td>Clerical</td>
<td>$31,000</td>
<td>$31,000</td>
<td>$31,000</td>
</tr>
<tr>
<td>Elon Card technician</td>
<td>$30,000</td>
<td>$30,000</td>
<td>$30,000</td>
</tr>
<tr>
<td>Student Tech assistants program & general student workers</td>
<td>$40,000</td>
<td>$40,000</td>
<td>$40,000</td>
</tr>
</tbody>
</table>

One-Time Expense

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2001</td>
<td>$2,890,000</td>
</tr>
</tbody>
</table>

On-Going Expense

<table>
<thead>
<tr>
<th>Year</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2001</td>
<td>$1,338,000</td>
</tr>
</tbody>
</table>

Yearly Total

<table>
<thead>
<tr>
<th>Year</th>
<th>Total Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000-2001</td>
<td>$4,228,000</td>
</tr>
<tr>
<td></td>
<td>Amount</td>
</tr>
<tr>
<td>----------------</td>
<td>-------------</td>
</tr>
<tr>
<td>2001-2002</td>
<td>$ 2,320,000</td>
</tr>
<tr>
<td>2002-2003</td>
<td>$ 1,990,000</td>
</tr>
<tr>
<td>Grand Total</td>
<td>$ 8,538,000</td>
</tr>
<tr>
<td>Total One-Time Expense</td>
<td>$ 4,121,000</td>
</tr>
<tr>
<td>Total On-Going Expense</td>
<td>$ 4,417,000</td>
</tr>
</tbody>
</table>
Number of Students by Institutions

- Bucknell: 3,496
- Elon: 3,925
- Furman: 2,840
- Richmond: 4,394
- Rollins: 2,166

Source: Peterson’s Guide to Four-Year Colleges
Percent of Residents Wired

- Bucknell: 100%
- Elon: 82%
- Furman: 100%
- Richmond: 100%
- Rollins: 100%

Source: Self-reported
Full-Time Instructors Served by Each Instructional Designer

Source: Self-reported
Number of Students Served by Each Lab Computer by Institution

<table>
<thead>
<tr>
<th>Institutions</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucknell</td>
<td>7.7</td>
</tr>
<tr>
<td>Elon</td>
<td>7.9</td>
</tr>
<tr>
<td>Furman</td>
<td>11.3</td>
</tr>
<tr>
<td>Richmond</td>
<td>8.7</td>
</tr>
<tr>
<td>Rollins</td>
<td>14.4</td>
</tr>
</tbody>
</table>
Number of PC Support Staff by Institution

Source: Self-reported
Elon College Video Projectors in Classrooms

- yr. 96-97: 3
- yr. 97-98: 5
- yr. 98-99: 5
- yr. 99-00: 13
- remaining to be installed: 49
Elon College Campus Computers by Technology Level

- Older Technology (slow): 245
- Newer Technology (faster): 170
- Newest Technology (fastest): 288

597 total

Legend:
- Older Technology (slow)
- Newer Technology (faster)
- Newest Technology (fastest)
- Macintosh Technology
Elon College
Residence Hall Data Connections

441

1,978

Wired
Remaining to Wire
Elon College Computer Count by Lab Type

- General and Academic Labs: 350
- Library: 130
- Residence Hall Labs: 15

Legend:
- General and Academic Labs
- Library
- Residence Hall Labs
Elon College Lab Computer
by
Technology Level

- Newer Technology (fast): 159
- Newest Technology (fastest): 279
- Macintosh Technology: 57